Trans-cis Photoisomerization of 1-Methyl-4-(4'-hydroxystyryl)pyridinium in Inclusion Complexes of β-Cyclodextrin and Its Derivatives

KEITA HAMASAKI, ASAO NAKAMURA, AKIHIKO UENO, and FUJIO TODA
Department of Bioengineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 227, Japan

(Received: 7 January 1992; in final form: 22 May 1992)

Abstract

The effects of β-cyclodextrin ($\beta \mathrm{CyD}$), heptakis(2,6 -di- O-methyl)- β-cyclodextrin ($\mathrm{DM} \beta \mathrm{CyD}$) and heptakis(2,3,6-tri-O-methyl)- β-cyclodextrin (TM $\beta \mathrm{CyD}$) on trans-cis photoisomerization of 1 -methyl-4-(4'-hydroxystyryl)pyridinium (POH) have been studied in aqueous solutions. The ratio of [cis]/[trans] for POH in the photostationary state at pH 8.54 was remarkably reduced by the presence of $\beta \mathrm{CyD}$ or $\mathrm{DM} \beta \mathrm{CyD}$. The reduction of the $[c i s] /[\operatorname{trans}]$ ratio in the photostationary state was explained in terms of the shift of the equilibrium of $\mathrm{POH}_{\text {trans }}^{+} \rightleftharpoons \mathrm{PO}_{\text {trans }}+\mathrm{H}^{+}$toward $\mathrm{PO}_{\text {trans }}$ formation. The binding constants of $\beta \mathrm{CyD}$ and $\mathrm{DM} \beta \mathrm{CyD}$ for $\mathrm{PO}_{\text {trans }}$ were 2.00 - and 1.36 -fold larger than those for $\mathrm{POH}_{\text {trans }}^{+}$, respectively. The binding constants of $\mathrm{TM} \beta \mathrm{CyD}$ for both species are much smaller than those of $\beta \mathrm{CyD}$ and $\mathrm{DM} \beta \mathrm{CyD}$. This result indicates that $\mathrm{PO}_{\text {rrans }}$, which has a betain structure, forms stable complexes with $\beta \mathrm{CyD}$ and $\mathrm{DM} \beta \mathrm{CyD}$ with its hydrophobic parts inside and the charged parts outside the CyD cavities.

Key words. 1-methyl-4-(4'-hydroxystyryl)pyridinium, trans-cis photoisomerization, betain, charge separation, cyclodextrin, inclusion complex.

1. Introduction

The photoisomerization of retinal in rhodopsin from 11-cis to all-trans acts as a trigg-of the visual process. Similar on-off switching by light is seen in the photosynthesis of Halobacterium halobium, in which photoisomerization of retinal from all-trans to 13-cis causes charge separation, generating a gradient in proton concentration. These reactions are suggested to proceed via singlet excited states. In connection with these light-sensitive systems in nature, it seems interesting to study artificial systems which have a photosensitive unit incorporated. We wish to report here photoisomerization of 1-methyl-4-(4'-hydroxystyryl) pyridinium $\left(\mathrm{POH}^{+}\right)$, alone and in the presence of β-cyclodextrin ($\beta \mathrm{CyD}$), heptakis $(2,6$-di- O-methyl) $-\beta$-cyclodextrin ($\mathrm{DM} \beta \mathrm{CyD}$) or heptakis ($2,3,6$-tri- O-methyl) $-\beta$-cyclodextrin (TM $\beta \mathrm{CyD}$). POH^{+}and its derivatives have been intensively investigated recently and its photoisomerization is suggested to occur via singlet excited states within 5 ns [1-5]. Steiner investigated the photochemistry of POH^{+}and various species relating to this compound, and clarified the following points. The trans form of POH^{+} $\left(\mathrm{POH}_{\text {rrans }}^{+}\right)$is transformed photochemically into its cis isomer $\left(\mathrm{POH}_{c i s}^{+}\right)$. When $\mathrm{POH}_{c i s}^{+}$is deprotonated to form $\mathrm{PO}_{\text {cis }}$, this species can be isomerized to $\mathrm{PO}_{\text {trans }}$ either photochemically or thermally, but this isomerization is a one way process and the reversion from $\mathrm{PO}_{\text {trans }}$ to $\mathrm{PO}_{\text {cis }}$ does not take place directly. Shulten regarded
this cycle as a model of retinal, particularly as that of the protonated Schiff base of retinal that acts as an actual trigger in the light-driven proton pump in the purple membrane of Halobacterium halobium. On the other hand, cyclodextrins (CyDs) have been investigated as an essential part of models of many biological systems, for example, as in artificial enzymes [6], photoinduced reduction systems relating to photosynthesis [7] and microenvironments in which stereospecific reactions take place [8]. In all of these systems, the hydrophobic cavities of CyDs play substantially important roles. On the basis, we have investigated the effect of the hydrophobic environment of CyDs on the $\mathrm{POH}^{+}-\mathrm{PO}$ deprotonation equilibrium as well as on trans-to-cis photoisomerization of the photosensitive species.

2. Experimental

β CyD, DMCyD and TMCyD were kindly donated by Nihon Shokuhin Kako Co., Ltd. 1-Methyl-4-(4'-hydroxystyryl) pyridinium iodide (POH-I) was purchased from Nippon Kankoh-shikiso Kenkyusho and used without further purification. Measurements have been performed with buffer solutions which were prepared with analytical grade reagents and deionized water made with a Millipore Milli 12 water purifier or deuterium oxide purchased from Merck for NMR study.

Photoirradiation was performed with a high-pressure mercury lamp. An emission line at 366 nm was selected using a combination of cut-off filters of Toshiba UV37 and UVD35 and an aqueous solution containing $\mathrm{NiSO}_{4}(25 \mathrm{~g} / \mathrm{l}$). Absorption (UV) spectra were measured with a Shimadzu UV 3100 spectrophotometer. NMR spectra were measured at 500 MHz and $25^{\circ} \mathrm{C}$ (Varian VXR 5000 system) with 3-(trimethylsi-lyl)-propionic acid- d_{6} sodium salt as an external standard, and the error limits in the chemical shifts were less than 0.002 ppm . The ratios of [cis]/[trans], where [cis] and $\left[\right.$ trans] are the total concentration of $\mathrm{POH}_{\text {cis }}^{+}$and $\mathrm{PO}_{\text {cis }}$ and that of $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$, respectively, were estimated from the peak areas of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals of the $\mathrm{C}(3)$ proton in the pyridyl ring. The binding constants of these complexes of CyDs were determined by least-square curve fitting using the absorbance changes for $\mathrm{PO}_{\text {trans }}$ and the change in chemical shifts of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals of the pyridyl-ring $\mathrm{C}(3)$ proton for $\mathrm{POH}_{\text {rrans }}^{+}(\delta 7.906-7.961 \mathrm{ppm})$ and $\mathrm{PO}_{\text {trans }}(\delta 7.779-7.819 \mathrm{ppm})$. In this analysis, the concentration of $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$ were both fixed at $10^{-5} \mathrm{M}$ and the concentration of CyDs were in the range between 2.5×10^{-3} and $10^{-2} \mathrm{M}$. The acid dissociation constant ($\mathrm{p} K_{\mathrm{a}}$) was determined by measuring the absorbance of $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$ at various pH values using citric, phosphate and borate buffer solution.

3. Results and Discussion

3.1. THE COMPLEX FORMATION AND THE ACID DISSOCIATION EQUILIBRIUM OF $\mathrm{POH}_{\text {trans }}^{+}$

The $\mathrm{p} K_{\mathrm{a}}$ value of $\mathrm{POH}_{\text {trans }}^{+}$in the presence of $\beta \mathrm{CyD}$ was obtained from titration curves of $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$, monitoring the absorption maximum of $\mathrm{POH}_{\text {trans }}^{+}$ $(372 \mathrm{~nm})$ or that of $\mathrm{PO}_{\text {trans }}(450 \mathrm{~nm})$, each titration curve giving 8.31 as the $\mathrm{p} K_{\mathrm{a}}$ value. The titration curve for $\mathrm{POH}_{\text {rans }}^{+}$is shown in Figure 1. The $\mathrm{p} K_{\mathrm{a}}$ value of

Fig. 1. Titration curve for $\mathrm{POH}_{\text {trans }}^{+}-\mathrm{PO}_{\text {trans }}$ equilibrium in the presence of $\beta \mathrm{CyD}\left(10^{-2} \mathrm{M}\right)$. The absorption maximum of $\mathrm{POH}_{\text {trans }}^{+}$at 372 nm was monitored. Total concentration of $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$ is $10^{-5} \mathrm{M}$.
$\mathrm{POH}_{\text {trans }}^{+}$was reported to be 8.54 [5], and the $\mathrm{p} K_{\mathrm{a}}$ value of 8.31 which was obtained here in the presence of $\beta \mathrm{CyD}$ is smaller than the reported one.

In the alkaline solution (pH 10.00), the absorbance maximum around 450 nm of $\mathrm{PO}_{\text {trans }}$ was shifted to longer wavelength upon addition of $\beta \mathrm{CyD}$ (Figure 2). Using this variation in absorption spectrum, the binding constants of CyDs for $\mathrm{PO}_{\text {trans }}$ were obtained. The absorbance at 500 nm was plotted as a function of concentration of each host and the curve fitting analysis of these data on the basis of $1: 1$ host:guest stoichiometry was performed based on the following modified BenesiHildebrand equation,

$$
\begin{equation*}
\mathrm{Abs}_{\text {obs }}=\frac{\mathrm{Abs}_{\cdot \min }+\mathrm{Abs}_{\cdot \max } K[\beta \mathrm{CyD}]}{1+K[\beta \mathrm{CyD}]} \tag{1}
\end{equation*}
$$

where, Abs. ${ }_{\text {obs }}$ is the observed absorbance, Abs.min is the absorbance in the absence $^{\text {m }}$ of $\beta \mathrm{CyD}, \mathrm{Abs}_{\text {max }}$ is the absorbance when all the guest molecules were included into the cavities of $\beta \mathrm{CyD}, K$ is the binding constant of complex formation, and [$\beta \mathrm{CyD}$] is the concentration of $\beta \mathrm{CyD}$. Figure 3 shows an example of this fitting. The plots of experimental values fit well with the theoretical curve, giving $480 \mathrm{M}^{-1}$ as the binding constant. This result indicates that $\mathrm{PO}_{\text {trans }}$ forms a $1: 1$ complex with

Fig. 2. Absorption spectra of $\mathrm{PO}_{\text {trans }}\left(10^{-5} \mathrm{M}\right)$, in the absence (\ldots) or in the presence of $\beta \mathrm{CyD}$ $\left(10^{-2} \mathrm{M}\right)(-)$.
$\beta \mathrm{CyD}$. On the other hand, the absorption changes associated with the complex formation of $\mathrm{POH}_{\text {trans }}^{+}$with $\beta \mathrm{CyD}$ were small, so the following equation was used to obtain the binding constants of $\beta \mathrm{CyD}$ for $\mathrm{POH}_{\text {trans }}^{+}$at pH 8.54 ,

$$
\begin{align*}
K_{\mathrm{a}}^{\prime} & =\frac{\left[\mathrm{PO}_{\text {trans }}\right]+\left[\mathrm{PO}_{\text {trans }}-\beta \mathrm{CyD}\right]}{\left[\mathrm{POH}_{\text {trans }}^{+}\right]+\left[\mathrm{POH}_{\text {trans }}^{+}-\beta \mathrm{CyD}\right]}\left[\mathrm{H}^{+}\right] \\
& =\frac{\left[\mathrm{PO}_{\text {trans }}\right]}{\left[\mathrm{POH}_{\text {trans }}^{+}\right]}\left[\mathrm{H}^{+}\right] \frac{1+\frac{\left[\mathrm{PO}_{\text {trans }}-\beta \mathrm{CyD}\right]}{1+\frac{\left[\mathrm{PO}_{\text {trans }}\right]}{\left[\mathrm{POH}_{\text {trans }}^{+}-\beta \mathrm{CyD}\right]}}}{} \tag{2}\\
& =K_{a} \frac{1+K_{2}[\beta \mathrm{CyD}]}{1+K_{1}[\beta \mathrm{CyD}]}
\end{align*}
$$

where $K_{\mathrm{a}}\left(2.88 \times 10^{-9}\right)$ and $K_{\mathrm{a}}^{\prime}\left(4.90 \times 10^{-9}\right)$ are the acid-dissociation constant of $\mathrm{POH}_{\text {trans }}^{+}$and the apparent acid-dissociation constant of the mixture of $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{POH}_{\text {trans }}^{+}-\beta \mathrm{CyD}$ complex, respectively. $\left[\mathrm{PO}_{\text {trans }}\right],\left[\mathrm{POH}_{\text {trans }}^{+}\right],\left[\mathrm{PO}_{\text {trans }}-\beta \mathrm{CyD}\right]$, $\left[\mathrm{POH}_{\text {trans }}^{+}-\beta \mathrm{CyD}\right]$ and $\left[\mathrm{H}^{+}\right]$are the concentrations of the corresponding species. K_{1} and K_{2} are binding constants of $\beta \mathrm{CyD}$ for $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$, respectively, and the value of K_{2} has already been determined to be $480 \mathrm{M}^{-1}$ from the curve-fitting

Fig. 3. The absorbance at 500 nm of $\mathrm{PO}_{\text {trans }}\left(10^{-5} \mathrm{M}\right)$ as a function of $\beta \mathrm{CyD}$ concentration at pH 10.00 and the theoretical curve obtained from the modified Benesi-Hildebrand equation ($K=480 \mathrm{M}^{-1}$).
analysis of the $\beta \mathrm{CyD}$-induced absorption variations. The binding constant K_{1} was calculated from the following equation and the value was $230 \mathrm{M}^{-1}$

$$
\begin{equation*}
K_{1}=\frac{1}{[\beta \mathrm{CyD}]}\left(\frac{K_{\mathrm{a}}}{K_{\mathrm{a}}^{\prime}}\left(1+K_{2}[\beta \mathrm{CyD}]\right)-1\right) \tag{3}
\end{equation*}
$$

When was used the numbering of the protons of $\mathrm{POH}_{\text {trans }}^{+}$defined by Steiner as shown in Figure 4 [1], the chemical shift for each proton of $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{POH}_{\text {cis }}^{+}$ varied with increasing concentration of $\beta \mathrm{CyD}$. The data of the species, alone or in

Fig. 4. The numbering of the aromatic protons of $\mathrm{POH}_{\text {trans }}^{+}$.

Table I. Chemical shifts values of $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{POH}_{c i s}^{+}$at pH 3.00

	Chemical shift values $\delta(\mathrm{ppm})$						
		C 2	C 3	C 5	C 6	C 8	C 9
$\mathrm{POH}_{\text {trans }}^{+}$	none	8.441	7.906	7.136	7.700	7.594	6.914
$\mathrm{POH}_{\text {cis }}^{+}$	$+\beta \mathrm{CyD}^{\mathrm{a}}$	8.492	7.961	7.114	7.697	7.577	6.881
	none	$+\beta \mathrm{CyD}^{\mathrm{a}}$	8.391	7.714	6.581	7.110	7.169

${ }^{1}$ In the presence of $\beta \operatorname{CyD}\left(10^{-3} \mathrm{M}\right)$.

Fig. 5. The chemical shift value of the $\mathrm{C}(3)$ proton of $\mathrm{POH}_{\text {trans }}^{+}$as a function of $\beta \mathrm{CyD}$ concentration and the theoretical curve obtained from the modified Benesi-Hildebrand equation ($K=240 \mathrm{M}^{-1}$) (pH 3.0).
the presence of $\beta \mathrm{CyD}\left(10^{-3} \mathrm{M}\right)$ are summarized in Table I . We used $\beta \mathrm{CyD}$ induced chemical shift variations of pyridyl-ring $\mathrm{C}(3)$ proton to obtain the binding constant of $\beta \mathrm{CyD}$ for $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$, respectively. Figure 5 shows an example of this plot and curve fitting. Binding constants of $\beta \mathrm{CyD}, \mathrm{DM} \beta \mathrm{CyD}$, and $\mathrm{TM} \beta \mathrm{CyD}$ for $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$ are summarized in Table II. The binding constants of $\beta \mathrm{CyD}$ for $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$ were $240 \mathrm{M}^{-1}$ and $470 \mathrm{M}^{-1}$, respectively, and are in good agreement with the K_{1} value obtained from Equation (3) ($230 \mathrm{M}^{-1}$) and the K_{2} value obtained from β CyD-induced absorption variations for $\mathrm{PO}_{\text {trans }}\left(480 \mathrm{M}^{-1}\right)$. The good agreement indicates that the model which leads to Equation (2) is reasonable. The variations in the chemical shift of $\mathrm{POH}_{\text {cis }}^{+}$suggest

Table II. Binding constants of CyDs for $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$ at $25^{\circ} \mathrm{C}$. ${ }^{\text {a }}$

	Binding constants $\left(\mathrm{M}^{-1}\right)$		
	$\beta \mathrm{CyD}$	$\mathrm{DM} \beta \mathrm{CyD}$	$\mathrm{TM} \beta \mathrm{CyD}$
$\mathrm{POH}_{\text {trans }}^{+}$	240	220	50
$\mathrm{PO}_{\text {trans }}$	480	300	60
Values obtained from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shift variations and from absorbance variations at			
500 nm for $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$, respectively.			

that $\mathrm{POH}_{\text {cis }}^{+}$also forms complexes with CyDs, but this complex formation does not affect the ratio of [cis]/[trans] in the photostationary state. This fact will be discussed in the next section.

3.2. THE EFFECT OF CyDs ON trans-cis PHOTOISOMERIZATION OF $\mathrm{POH}_{\text {trans }}^{+}$

We observed that the ratio of [cis]/[trans] in the photostationary state is affected by the presence of CyDs. Figure 6 shows the time dependence of the absorbance of $\mathrm{POH}_{\text {trans }}^{+}$at 372 nm in the neutral aqueous solution $(0.02 \mathrm{M}$ phosphate buffer pH 7.0), alone and in the presence of $\beta \mathrm{CyD}$. It indicates that $\mathrm{POH}_{\text {trans }}^{+}$is converted into $\mathrm{POH}_{c i s}^{+}$, the photostationary state being reached within 8 minutes under the experimental conditions. Although the effect of $\beta \mathrm{CyD}$ on the initial rate of this photoisomerization was small, the apparent ratio of $[c i s] /[t r a n s]$ in the photostationary state was depressed by β CyD.

The accurate ratios of [cis]/[trans] in the photostationary state were estimated from the peak area of the signals of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{POH}_{\text {cis }}^{+}$and $\mathrm{POH}_{\text {trans }}^{+}$, and the results are summarized in Table III. It is known that the unprotonated form, $\mathrm{PO}_{\text {trans }}$, does not isomerize into $\mathrm{PO}_{\text {cis }}$ photochemically or thermally [1], so that no isomerization proceeds in alkaline solution ($\mathrm{pH} 10.00,0.05 \mathrm{M}$ borate buffer) where solely $\mathrm{PO}_{\text {trans }}$ exists. In contrast to the behavior of $\mathrm{PO}_{\text {trans }}, \mathrm{POH}_{\text {trans }}^{+}$undergoes photoisomerization in acidic solution ($\mathrm{pH} 3.00,0.035 \mathrm{M}$ formate buffer), but the effects of CyDs on trans-to-cis photoisomerization were not appreciable at this pH . On the other hand, photoisomerization of azobenzene was reported to be retarded by the presence of $\beta \mathrm{CyD}$ [9], and consequently the result obtained here suggests that rotation of the carbon-carbon double bond of $\mathrm{POH}_{\text {trans }}^{+}$in the complex is different from that of the nitrogen-nitrogen double bond of azobenzene in the complex with $\beta \mathrm{CyD}$, probably existing near the rim of $\beta \mathrm{CyD}$. There is an indication, described above, that $\mathrm{POH}_{\text {cis }}^{+}$also forms a complex with CyDs , but the fact

Table III. Ratios of [cis]/[trans] in the photostationary state

pH	none	$\beta \mathrm{CyD}$	DM $\beta \mathrm{CyD}$	TM $\beta \mathrm{CyD}$
3.00	$60 / 40$	$58 / 42$	$57 / 43$	$60 / 40$
8.54	$29 / 71$	$14 / 86$	$17 / 83$	$25 / 75$

Error limits are less than 2%. Total concentration $10^{-5} \mathrm{M}$

Fig. 6. The plots of absorbance at 372 nm of $\mathrm{POH}_{\text {trans }}^{+}\left(10^{-5} \mathrm{M}\right)$ at $25^{\circ} \mathrm{C}$ as a function of irradiation time, alone (\square) or in the presence of $\beta \mathrm{CyD}\left(10^{-2} \mathrm{M}\right)$ ($\mathrm{m}_{\text {) }}$) in a phosphate buffer solution (pH 7.0).
that the $[$ cis $] /[$ trans $]$ ratio is not affected at pH 3.00 suggests that the cis-totrans process of $\mathrm{POH}_{\text {cis }}^{+}$is hardly influenced by the complexation. This may be related to the nonplanner structure of the cis isomer, which is not suited to deep inclusion in the cavity of CyDs. We found that in the solution having the pH value equal to $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{POH}_{\text {trans }}^{+}(\mathrm{pH} 8.54,0.05 \mathrm{M}$ borate buffer) where the concentrations of $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$ are the same, the trans-to-cis photoisomerization was remarkably depressed upon addition of $\beta \mathrm{CyD}$ or $\mathrm{DM} \beta \mathrm{CyD}$. The pH dependence of the $[$ cis $] /[$ trans $]$ ratio indicated that the shift of the equilibrium from $\mathrm{POH}_{\text {trans }}^{+}$to $\mathrm{PO}_{\text {trans }}$ is the major factor that governs the ratio of cis isomer.

3.3. THE EFFECT OF CyDs ON THE REACTION CYCLE OF POH ${ }^{+}$

The acid dissociation constant of the $\mathrm{POH}_{\text {trans }}^{+}-\beta \mathrm{CyD}$ complax $\left(K_{\mathrm{a}}^{\prime \prime}\right)$ is obtained from the following equation

$$
\begin{equation*}
K_{\mathrm{a}}^{\prime \prime}=\frac{\left[\mathrm{PO}_{\text {trans }}-\beta \mathrm{CyD}\right]}{\left[\mathrm{POH}_{\text {trans }}^{+}-\beta \mathrm{CyD}\right]}\left[\mathrm{H}^{+}\right]=\frac{K_{2}}{K_{1}}\left[\mathrm{H}^{+}\right] \tag{4}
\end{equation*}
$$

Table IV. Values of $\mathrm{p} K_{a}^{\prime}$ and $\mathrm{p} K_{\mathrm{a}}^{\prime \prime}$ obtained from Equations (2) and (4), respectively

	β CyD	DM β CyD	TM β CyD
$\mathrm{p} K_{\mathrm{a}}^{\prime}$	8.32	8.45	8.52
$\mathrm{p} K_{\mathrm{a}}^{\prime \prime}$	8.25	8.42	8.47

K_{a}^{\prime} : apparent acid-dissociation constant of the mixture of $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{POH}_{\text {trans }}^{+}-\beta \mathrm{CyD}$ complex.
$K_{\mathrm{a}}^{\prime \prime}$: acid-dissociation constant of the complex of $\mathrm{POH}_{\text {trans }}^{+}$with CyDs.

The values of $\mathrm{p} K_{\mathrm{a}}^{\prime}$ and $\mathrm{p} K_{\mathrm{a}}^{\prime \prime}$ were obtained from Equations (2) and (4), respectively, and the results are summarized in Table IV. In the case of $\beta C y D$, the $\mathrm{p} K_{\mathrm{a}}^{\prime}$ value obtained from Equation (2) was 8.32. The value is consistent with the one obtained by the titration method (Figure 1). In the case of $\beta \mathrm{CyD}$, the $\mathrm{p} K_{\mathrm{a}}$ value was 8.25 , suggesting that the acid dissociation equilibrium of $\mathrm{POH}_{\text {trans }}^{+}$was shifted toward $\mathrm{PO}_{\text {trans }}$ formation. The binding constants of $\mathrm{PO}_{\text {trans }}-\beta \mathrm{CyD}$ and $\mathrm{PO}_{\text {trans }}-\mathrm{DM} \beta \mathrm{CyD}$ complexes are 2.00 - and 1.36 -fold larger than those of $\mathrm{POH}_{\text {trans }}^{+}-\beta \mathrm{CyD}$ and $\mathrm{POH}_{\text {trans }}^{+}-\mathrm{DM} \beta \mathrm{CyD}$, indicating that the former complexes are more stable than the latter ones. The binding features as well as the $\beta \mathrm{CyD}$-induced shift of $\mathrm{p} K_{\mathrm{a}}$ for $\mathrm{POH}_{\text {trans }}^{+}$ may be related to the reduced ratio of $[c i s] /[$ trans $]$ of the species. The $\beta \mathrm{CyD}$-induced conversion from $\mathrm{POH}_{\text {trans }}^{+}$to $\mathrm{PO}_{\text {trans }}$ in the solution at pH 8.54 should decrease the cis concentration because $\mathrm{POH}_{\text {trans }}^{+}$is the only species that undergoes photoisomerization from the trans to cis form. In contrast to the cases of $\beta \mathrm{CyD}$ and $\mathrm{DM} \beta \mathrm{CyD}, \mathrm{TM} \beta \mathrm{CyD}$ did not affect the ratio of $[$ cis $] /[$ trans $]$ in the photostationary state. This result seems reasonable because the binding constants of TM $\beta \mathrm{CyD}$ for $\mathrm{POH}_{\text {trans }}^{+}$and $\mathrm{PO}_{\text {trans }}$ are much smaller than those of $\beta \mathrm{CyD}$ and $\mathrm{DM} \beta \mathrm{CyD}$ (Table II). On the other hand, ratios of $\left\{\left[\mathrm{PO}_{\text {trans }}\right]+\left[\mathrm{PO}_{\text {trans }}-\mathrm{CyDs}\right]\right\} /\left\{\left[\mathrm{POH}_{\text {trans }}^{+}\right]+\right.$ $\left.\left[\mathrm{POH}_{\text {trans }}^{+}-\mathrm{CyDs}\right]\right\}$ were obtained from Equation (2), and the results are given in Table V. In the case of $\mathrm{TM} \beta \mathrm{CyD}$, the ratio was not so different from that in the absence of CyDs.

The above results demonstrate that betain guests like $\mathrm{PO}_{\text {trans }}$ can form stable complexes with $\beta \mathrm{CyD}$ and $\mathrm{DM} \beta \mathrm{CyD}$ in spite of charges existing at both ends of the molecules (Figure 7). This may be due to the fact that the charged guest molecule of $\mathrm{PO}_{\text {trans }}$ penetrates the cavities in the complexes of CyDs with its hydrophobic parts inside and charged part outside the cavities. In many biological systems, the hydrophobic or constrained microenvironment of enzyme or receptor cavities plays important roles in binding and reaction events. In the present system, the microenvironment of CyDs cavities shifts the protonation-deprotonation equilibrium as well as the trans-cis ratio in the photostationary state. On the other hand, charge separation is also important in many biological systems, and the

Table V . Ratios of $\left\{\left[\mathrm{PO}_{\text {trans }}\right]+\left[\mathrm{PO}_{\text {rrans }}-\beta \mathrm{CyD}\right]\right\} /\left\{\left[\mathrm{POH}_{\text {trans }}^{+}\right]+\left[\mathrm{POH}_{\text {trans }}^{+}-\beta \mathrm{CyD}\right]\right\}$ before irradiation in borate buffer solution pH 8.54

none	β CyD	DM β CyD	TM β CyD
$50 / 50$	$63 / 37$	$56 / 44$	$51 / 49$

pKa" $=8.25$
$\downarrow \mid K_{1}=240$

POH^{+}trans
$\mathrm{pKa}=8.54$

Fig. 7. Schematic illustration of trans-cis photoisomerization, acid dissociation and complex formation equilibrium. Binding constants and $\mathrm{p} K_{\mathrm{a}}^{\prime \prime}$ are for the case of $\beta \mathrm{CyD}$.
present result suggests that the molecules with large electronic dipole may also be accommodated in the hydrophobic binding sites without appreciable difficulty if their charges are adequately positioned apart from each other.

References

1. U. Steiner, M. H. Abdel-Kader, P. Fisher, and H. E. A. Kramer: J. Am. Chem. Soc. 100, 3190 (1978).
2. H. Görner, A. Fojtik, J. Wroblewski, and L. J. Currell: Z. Naturforsh. 40a, 525.
3. H. Görner and H. Gruen: J. Photochem. 28, 329 (1985).
4. H. Görner and G. Galiazzo: J. Photochem. Photobiol. 43, 139 (1988).
5. G. L. Gains Jr: Angew. Chem. Int. Ed. Engl. 26, 4341 (1987).
6. Y. Iwakura, K. Uno, F. Toda, S. Onozuka, K. Hattori and M. L. Bender: J. Am. Chem. Soc. 97, 4432 (1975).
7. Y-Q. Do, A. Nakamura and F. Toda: Chem. Lett. 2235 (1990).
8. A. Ueno, F. Moriwaki, Y. Iwama, I. Suzuki, T. Osa, T. Ohta and S. Nozoe: J. Am. Chem. Soc. 113, 7034 (1991).
9. P. Bortolus and Sandra Montini: J. Phys. Chem. 91, 5046 (1987).
